Hierarchical Item Inconsistency Signal Learning for Sequence Denoising in Sequential Recommendation

Chi Zhang Harbin Engineering University Harbin, China zhangchi20@hrbeu.edu.cn

Qilong Han*
Harbin Engineering University
Harbin, China
hanqilong@hrbeu.edu.cn

Yantong Du Harbin Engineering University Harbin, China duyantong94@hrbeu.edu.cn

Rui Chen*
Harbin Engineering University
Harbin, China
ruichen@hrbeu.edu.cn

Xiangyu Zhao*
City University of Hong Kong
Hong Kong
xianzhao@cityu.edu.hk

Li Li University of Delaware Newark, United States lilee@udel.edu

CIKM 2022

Code: https://github.com/zc-97/HSD.

Motivation

Motivation:

• Historical sequences typically contain some inherent noise (e.g., accidental interactions).

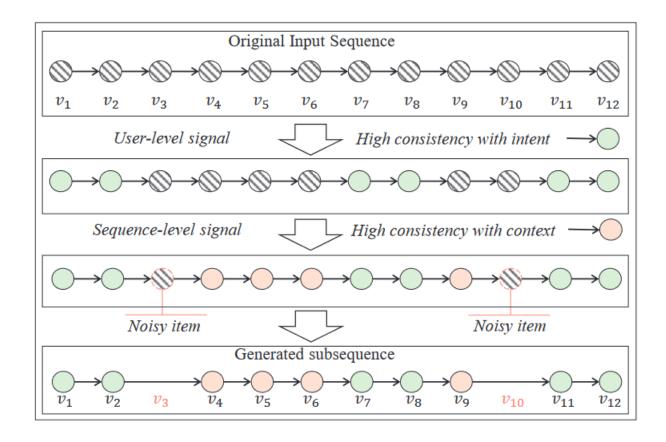
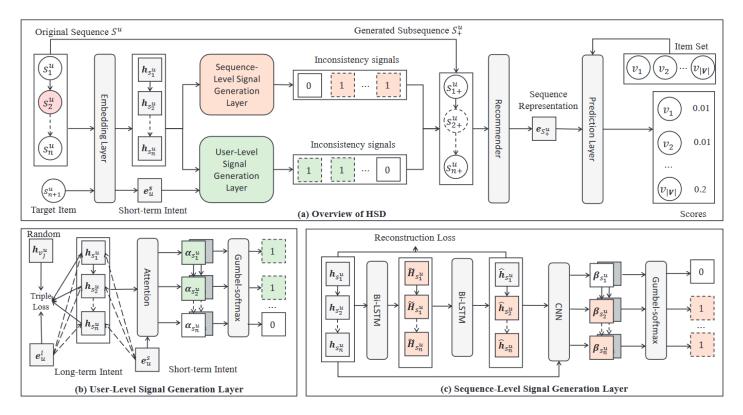
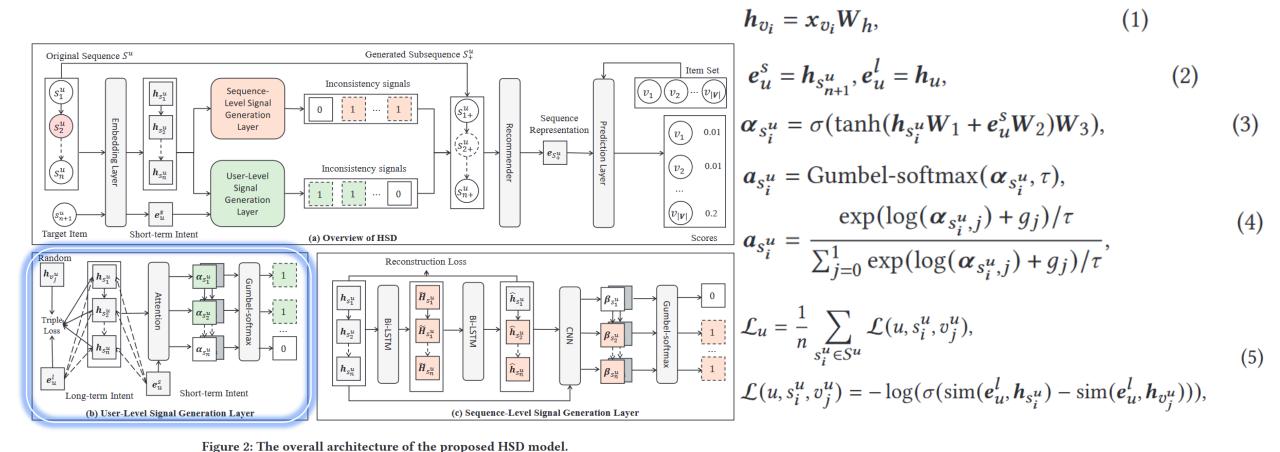



Figure 1: An illustration of hierarchical item inconsistency signals for sequence denoising.

Problem Statement

$$S = \{S^{u_1}, S^{u_2}, \dots, S^{u_{|\mathcal{U}|}}\}$$

$$\mathcal{U} = \{u_1, u_2, \dots, u_{|\mathcal{U}|}\}$$


$$\mathcal{V} = \{v_1, v_2, \dots, v_{|\mathcal{V}|}\}$$

$$S^u = [s_1^u, s_2^u, \dots, s_n^u]$$

$$S_+^u = [s_{1+}^u, s_{2+}^u, \dots, s_{n+1}^u]$$

$$|S_+^u| \le |S^u|$$

Method

Method

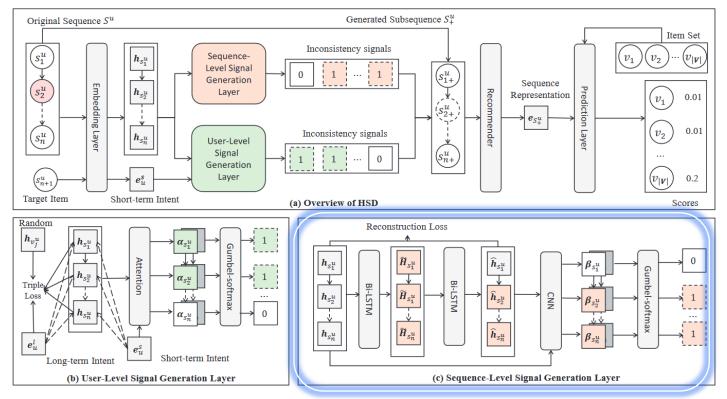


Figure 2: The overall architecture of the proposed HSD model.

$$\tilde{H}_{Su}^{L}, \tilde{H}_{Su}^{R} = \text{Bi-LSTM}(H_{Su}, \Theta_{1}),
\tilde{H}_{Su} = \tilde{H}_{Su}^{L} + \tilde{H}_{Su}^{R},
\hat{H}_{Su}^{L}, \hat{H}_{Su}^{R} = \text{Bi-LSTM}(\tilde{H}_{Su}, \Theta_{1}),
\hat{H}_{Su} = \hat{H}_{Su}^{L} + \hat{H}_{Su}^{R},
\mathcal{L}_{Su} = \frac{1}{n} \sum_{j=1}^{n} (\hat{h}_{s_{i}^{u}} - h_{s_{i}^{u}})^{2}.$$

$$c_{s_{i}^{u}} = \text{Conv}^{i} ([\hat{h}_{s_{i}^{u}} || h_{s_{i}^{u}}], \Theta_{2}^{i}),
\beta_{s_{i}^{u}} = \sigma(c_{s_{i}^{u}} W_{4}),
b_{s_{i}^{u}} = \text{Gumbel-softmax}(\beta_{s_{i}^{u}}, \tau),$$

$$b_{s_{i}^{u}} = \frac{\exp(\log(\beta_{s_{i}^{u},j}) + g_{j})/\tau}{\sum_{j=0}^{1} \exp(\log(\beta_{s_{i}^{u},j}) + g_{j})/\tau},$$
(9)

(15)

Method

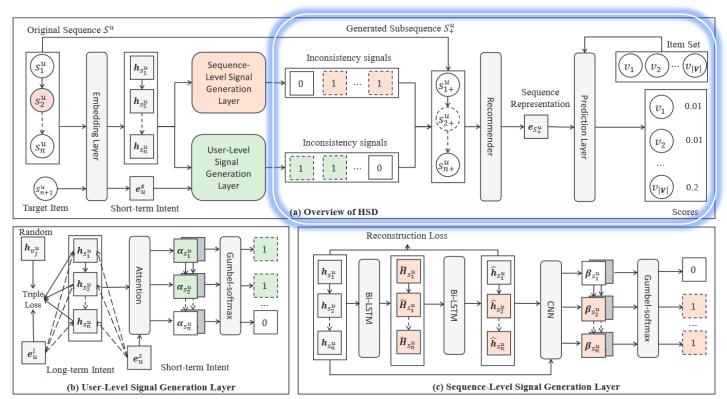


Figure 2: The overall architecture of the proposed HSD model.

$$r_{s_{i}^{u}} = a_{s_{i}^{u}} b_{s_{i}^{u}},$$

$$H_{+}^{u} = [r_{s_{1}^{u}} h_{s_{1}^{u}}, r_{s_{2}^{u}} h_{s_{2}^{u}}, \cdots, r_{s_{n}^{u}} h_{s_{n}^{u}}],$$

$$e_{S_{+}^{u}} = F(H_{+}^{u}), \qquad (11)$$

$$z_{i} = e_{S_{+}^{u}} h_{v_{i}}^{T}. \qquad (12)$$

$$\hat{y}_{i} = \frac{\exp(z_{i})}{\sum_{v_{j} \in \mathcal{V}} \exp(z_{j})}. \qquad (13)$$

$$\mathcal{L}(y, \hat{y}) = -\sum_{i=1}^{|\mathcal{V}|} (y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i})), \qquad (14)$$

$$Loss = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} (\mathcal{L}(y, \hat{y}) + \mathcal{L}_{u} + \mathcal{L}_{S^{u}}) + \lambda ||\Theta||_{2}^{2}, \qquad (15)$$

Table 1: Statistics of the datasets

Dataset	# Sequences	# users	# Items	# Sparsity
ML-100k	99,287	944	1,350	92.21%
ML-1M	999,611	6,041	3,417	95.16%
Beauty	198,502	22,364	12,102	99.93%
Sports	296,337	35,599	18,358	99.95%
Yelp	317,078	30,495	20,062	99.95%

Table 2: Experimental results of different sequential recommendation methods with (w) or without (w/o) HSD on the five datasets. The best results are boldfaced, and Imprv indicates the average improvements over all metrics. All improvements are statistically significant (i.e., two-sided t-tests with p < 0.05).

Datasets	Metric	GRU4Rec		NARM		STAMP		Caser		SASRec		BERT4Rec	
	Metric	w/o	w	w/o	w	w/o	w	w/o	w	w/o	w	w/o	w
	HR@5	0.0191	0.0276	0.0180	0.0223	0.0201	0.0255	0.0212	0.0255	0.0191	0.0371	0.0191	0.0339
ML-100k	HR@10	0.0286	0.0488	0.0403	0.0403	0.0392	0.0467	0.0339	0.0477	0.0371	0.0583	0.0414	0.0732
	HR@20	0.0594	0.0742	0.0657	0.0785	0.0700	0.0870	0.0679	0.0742	0.0764	0.1018	0.0912	0.1294
	N@5	0.0104	0.0173	0.0132	0.0144	0.0115	0.0151	0.0113	0.0154	0.0114	0.0225	0.0117	0.0178
	N@10	0.0134	0.0241	0.0202	0.0201	0.0176	0.0217	0.0153	0.0224	0.0172	0.0292	0.0189	0.0305
	N@20	0.0212	0.0306	0.0267	0.0299	0.0253	0.0320	0.0238	0.0291	0.0270	0.0401	0.0315	0.0447
	MRR	0.0109	0.0185	0.0162	0.0169	0.0132	0.0171	0.0119	0.0168	0.0139	0.0234	0.0157	0.0218
	Imprv.		63.91%		7.82%		26.78%		35.74%		71.88%		52.68%
	HR@5	0.0194	0.0260	0.0151	0.0260	0.0232	0.0301	0.0104	0.0252	0.0397	0.0500	0.0224	0.0477
	HR@10	0.0373	0.0427	0.0349	0.0417	0.0440	0.0530	0.0215	0.0424	0.0666	0.0858	0.0495	0.0886
ML-1M	HR@20	0.0690	0.0745	0.0591	0.0677	0.0677	0.0899	0.0589	0.0725	0.1007	0.1326	0.0980	0.1399
14117-1141	N@5	0.0135	0.0152	0.0080	0.0162	0.0150	0.0190	0.0063	0.0161	0.0207	0.0282	0.0132	0.0297
	N@10	0.0190	0.0206	0.0144	0.0212	0.0218	0.0264	0.0099	0.0216	0.0294	0.0397	0.0218	0.0429
	N@20	0.0270	0.0286	0.0205	0.0277	0.0278	0.0357	0.0194	0.0291	0.0379	0.0515	0.0339	0.0558
	MRR	0.0159	0.0161	0.0100	0.0168	0.0168	0.0209	0.0091	0.0173	0.0203	0.0290	0.0169	0.0328
	Imprv.		9.68%		62.42%		25.63%		108.61%		36.26%		95.82%
	HR@5	0.0077	0.0131	0.0120	0.0187	0.0080	0.0201	0.0072	0.0106	0.0242	0.0267	0.0060	0.0261
	HR@10	0.0135	0.0229	0.0209	0.0311	0.0135	0.0325	0.0133	0.0183	0.0386	0.0449	0.0127	0.0447
Beauty	HR@20	0.0256	0.0378	0.0367	0.0495	0.0231	0.0505	0.0235	0.0290	0.0561	0.0674	0.0204	0.0683
Deduty	N@5	0.0045	0.0082	0.0071	0.0114	0.0046	0.0128	0.0044	0.0064	0.0129	0.0147	0.0037	0.0147
	N@10	0.0064	0.0113	0.0099	0.0153	0.0064	0.0168	0.0064	0.0089	0.0175	0.0205	0.0059	0.0207
	N@20	0.0094	0.0150	0.0139	0.0199	0.0088	0.0213	0.0090	0.0116	0.0219	0.0261	0.0078	0.0266
	MRR	0.0051	0.0088	0.0077	0.0118	0.0049	0.0133	0.0051	0.0068	0.0122	0.0146	0.0044	0.0151
	Imprv.		71.71%		52.54%		161.44%		38.06%		17.05%		262.99%
	HR@5	0.0064	0.0097	0.0090	0.0096	0.0071	0.0097	0.0069	0.0077	0.0113	0.0131	0.0055	0.0135
	HR@10	0.0114	0.0152	0.0138	0.0169	0.0123	0.0155	0.0115	0.0129	0.0175	0.0224	0.0104	0.0224
Sports	HR@20	0.0183	0.0230	0.0223	0.0282	0.0182	0.0252	0.0178	0.0214	0.0268	0.0348	0.0167	0.0365
oporto	N@5	0.0035	0.0067	0.0058	0.0063	0.0046	0.0065	0.0046	0.0049	0.0059	0.0071	0.0036	0.0072
	N@10	0.0051	0.0085	0.0073	0.0087	0.0062	0.0084	0.0061	0.0065	0.0079	0.0100	0.0051	0.0101
	N@20	0.0068	0.0105	0.0094	0.0115	0.0077	0.0108	0.0077	0.0086	0.0102	0.0132	0.0067	0.0137
	MRR	0.0036	0.0070	0.0059	0.0070	0.0048	0.0069	0.0049	0.0052	0.0055	0.0071	0.0040	0.0073
	Imprv.		71.53%		17.12%		39.05%		8.85%		25.80%		102.39%
yelp	HR@5	0.0057	0.0104	0.0113	0.0180	0.0060	0.0147	0.0045	0.0169	0.0293	0.0334	0.0087	0.0292
	HR@10	0.0102	0.0180	0.0187	0.0248	0.0099	0.0216	0.0084	0.0198	0.0352	0.0446	0.0159	0.0408
	HR@20	0.0184	0.0317	0.0315	0.0349	0.0161	0.0345	0.0146	0.0251	0.0439	0.0613	0.0273	0.0593
	N@5	0.0034	0.0066	0.0075	0.0142	0.0038	0.0107	0.0028	0.0151	0.0251	0.0255	0.0054	0.0223
	N@10	0.0048	0.0090	0.0099	0.0164	0.0051	0.0129	0.0040	0.0160	0.0270	0.0291	0.0077	0.0260
	N@20	0.0068	0.0124	0.0131	0.0189	0.0066	0.0162	0.0055	0.0173	0.0292	0.0333	0.0105	0.0307
	MRR	0.0037	0.0072	0.0081	0.0145	0.0040	0.0112	0.0031	0.0152	0.0250	0.0255	0.0060	0.0228
	Imprv.		87.83%		64.52%		158.53%		315.36%		11.33%		246.14%

Table 3: The experimental comparison between HSD with the best/worst base model and the state-of-the-art denoising methods on the five datasets. The best results are boldfaced, the second-best results are underlined. Imprv indicates the average improvements between the best and worst ones over the baselines. All improvements are statistically significant (i.e., two-sided t-test with p < 0.05) over the best baselines.

Dataset	Model	HR@5	HR@10	HR@20	N@5	N@10	N@20	MRR
	DSAN (AAAI'21)	0.0201	0.0435	0.0700	0.0115	0.0188	0.0254	0.0133
	FMLP-Rec (WWW'22)	0.0170	0.0477	0.0764	0.0117	0.0216	0.0288	0.0160
ML-100k	HSD+NARM	0.0223	0.0403	0.0785	0.0144	0.0201	0.0299	0.0169
	HSD+BERT4Rec	0.0339	0.0732	0.1294	0.0178	0.0305	0.0447	0.0218
	Imprv.	40%±29%	19%±34%	36%±33%	38%±15%	17%±24%	30%±26%	21%±15%
	DSAN	0.0098	0.0336	0.0651	0.0048	0.0122	0.0200	0.0081
	FMLP-Rec	0.0210	0.0449	0.0707	0.0120	0.0199	0.0263	0.0142
ML-1M	HSD+NARM	0.0260	0.0417	0.0677	0.0162	0.0212	0.0277	0.0168
	HSD+BERT4Rec	0.0477	0.0886	0.1399	0.0297	0.0429	0.0558	0.0328
	Imprv.	75%±52%	45%±52%	47%±51%	91%±56%	61%±55%	59%±53%	75%±56%
	DSAN	0.0092	0.0152	0.0264	0.0058	0.0077	0.0105	0.0062
	FMLP-Rec	0.0095	0.0166	0.0284	0.0056	0.0078	0.0107	0.0060
Beauty	HSD+Caser	0.0106	0.0183	0.0290	0.0064	0.0089	0.0116	0.0068
	HSD+BERT4Rec	0.0261	0.0447	0.0683	0.0147	0.0207	0.0266	0.0151
	Imprv.	93%±82%	90%±80%	71%±69%	82%±72%	90%±76%	79%±70%	77%±67%
	DSAN	0.0061	0.0105	0.0215	0.0042	0.0056	0.0084	0.0049
	FMLP-Rec	0.0068	0.0117	0.0180	0.0044	0.0059	0.0075	0.0046
Sports	HSD+Caser	0.0077	0.0129	0.0214	0.0049	0.0065	0.0086	0.0052
	HSD+BERT4Rec	0.0120	0.0190	0.0303	0.0078	0.0100	0.0129	0.0081
	Imprv.	45%±32%	36%±26%	20%±21%	44%±33%	40%±30%	28%±26%	36%±30%
Yelp	DSAN	0.0269	0.0369	0.0541	0.0211	0.0242	0.0285	0.0216
	FMLP-Rec	0.0203	0.0294	0.0436	0.0142	0.0171	0.0207	0.0144
	HSD+GRU4Rec	0.0104	0.0180	0.0317	0.0066	0.0090	0.0124	0.0072
	HSD+BERT4Rec	0.0292	0.0408	0.0593	0.0223	0.0260	0.0307	0.0228
	Imprv.	-26%±35%	-20%±31%	-16%±26%	-32%±37%	-28%±35%	-24%±32%	-31%±36%

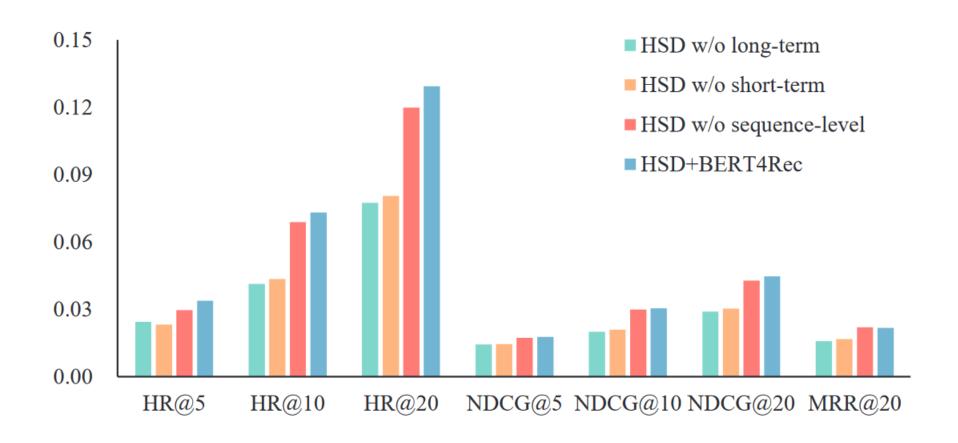


Figure 3: Impact of different inconsistency signal generation layers.

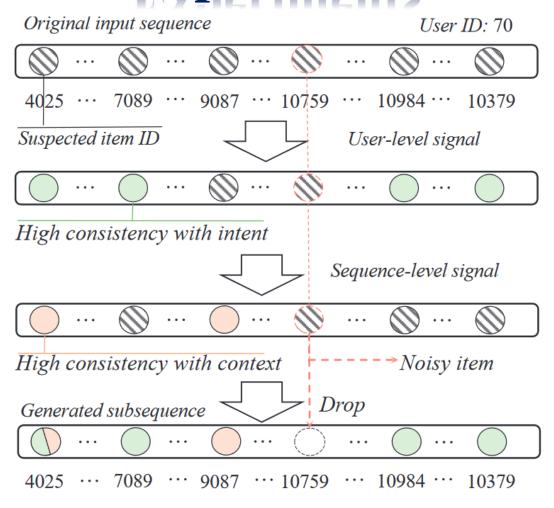


Figure 4: A case study to show how different inconsistency signals affect the denoising process.

Thanks